The
Complete
Reference

237



238 C++: The Complete Reference

C/C++ program. These are called preprocessor directives, and although not
actually part of the C or C++ language per se, they expand the scope of the
programming environment, This chapter also examines comments.

You can include various instructions to the compiler in the source code of a

Before beginning, it is important to put the preprocessor in historical perspective.
As it relates to C++, the preprocessor is largely a holdover from C. Moreover, the
C++ preprocessor is virtually identical to the one defined by C. The main difference
between C and C++ in this regard is the degree to which each relies upon the
preprocessor. In C, each preprocessor directive is necessary. In C++, some features
have been rendered redundant by newer and better C++ language elements. In fact,
one of the long-term design goals of C++ is the elimination of the preprocessor
altogether. But for now and well into the foreseeable future, the preprocessor will
still be widely used.

The preprocessor contains the following directives:

#define #elif #else #endif
#error #if #ifdef #ifndef
#include #line #pragma #undef

As you can see, all preprocessor directives begin with a # sign. In addition, each
preprocessing directive must be on its own line. For example,

. #include <stdio.h> #include <stdlib.h>

will not work.

___ | #define

The #define directive defines an identifier and a character sequence (i.e., a set of
characters) that will be substituted for the identifier each time it is encountered in the
source file. The identifier is referred to as a macro name and the replacement process as
macro replacement. The general form of the directive is

#define macro-name char-sequence

Notice that there is no semicolon in this statement. There may be any number of spaces
between the identifier and the character sequence, but once the character sequence
begins, it is terminated only by a newline.



Chapter 10: The Preprocessor and Comments

For example, if you wish to use the word LEFT for the value 1 and the word RIGHT
for the value 0, you could declare these two #define directives:

#define LEFT 1
#define RIGHT O

This causes the compiler to substitute a 1 or a 0 each time LEFT or RIGHT is encountered
in your source file. For example, the following prints 0 1 2 on the screen:

o
% printf("%d $d %d". RIGHT, LEFT, LEFT+1l);

Once a macro name has been defined, it may be used as part of the definition of other
macro names. For example, this code defines the values of ONE, TWO, and THREE:

#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO

Macro substitution is simply the replacement of an identifier by the character
sequence associated with it. Therefore, if you wish to define a standard error message,

you might write something like this:

#define E_MS "standard error on input\a"
VA
printf (E_MS);

The compiler will actually substitute the string "standard error on input\n’ when the
identifier E_MS is encountered. To the compiler, the printf() statement will actually

appear to be

printf ("standard error on input\n");

NGO text substitutions occur if the identifier is within a quoted string. For example,

#define XYZ this is a test

printf ("XYZ");

does not print this is a test, but rather XYZ.

239




240 C++: The Complete Reference

If the character sequence is longer than one line, you may continue it on the next by
placing a backslash at the end of the line, as shown here:

#define LONG_STRING "this is a very long \
string that is used as an example"

C/C++ programmers commonly use uppercase letters for defined identifiers.
This convention helps anyone reading the program know at a glance that a macro
replacement will take place. Also, it is usually best to put all #defines at the start of the
file or in a separate header file rather than sprinkling them throughout the program.

Macros are most frequently used to define names for "magic numbers” that occur
in a program. For example, you may have a program that defines an array and has
several routines that access that array. Instead of "hard-coding" the array's size with a
constant, you can define the size using a #define statement and then use that macro
name whenever the array size is needed. In this way, if you need to change the size
of the array, you will only need to change the #define statement and then recompile
your program. For example,

#define MAX_SIZE 100

VA
float balance[MAX_ SIZE]:
VA

for (i=0; i<MAX_SIZE; i++) printf("%f", balance(i]);
VAN

for(i=0; i<MAX_SIZE; i++) x =+ balance{i];

Since MAX_SIZE defines the size of the array balance, if the size of balance needs
to be changed in the future, you need only change the definition of MAX_SIZE. All
subsequent references to it will be automatically updated when you recompile
your program.

Noi(' l C++ provides a better way of defining constants, which uses the const keyword.
— This is described in Part Tivo.

Defining Function-like Macros

The #define directive has another powerful feature: the macro name can have arguments.
Each time the macro name is encountered, the arguments used in its definition are
replaced by the actual arguments found in the program. This form of a macro is called
a function-like macro. For example,



Chapter 10: The Preprocessor and Comments 241

#include <stdio.h>

#define ABS(a) (a)<0 ? -(a) : (a)
int main(void)

{

printf("abs of -1 and 1: %d %d", ABS{(-1), ABS({(1l));

return 0;

When this program is compiled, a in the macro definition will be substituted with
the values —1 and 1. The parentheses that enclose a ensure proper substitution in all
cases. For example, if the parentheses around a were removed, this expression

ABS(10-20)

would be converted to

10-20<0 2 -10-20 : 10-20

after macro replacement and would yield the wrong result.

The use of a function-like macro in place of real functions has one major benefit: It
increases the execution speed of the code because there is no function call overhead.
However, if the size of the function-like macro is very large, this increased speed may
be paid for with an increase in the size of the program because of duplicated code.

i Note I Although parameterized macros are a valuable feature, C++ has a better way of creating

inline code, which uses the inline keyword.

| #error

The #error directive forces the compiler to stop compilation. 1t is used primarily for
debugging. The general form of the #error directive is

#error error-message

The error-message is not between double quotes. When the #error directive is encountered,
the error message is displayed, possibly along with other information defined by the
compiler.



242 C++: The Complete Reference

__| #include

The #include directive instructs the compiler to read another source file in addition
to the one that contains the #include directive. The name of the additional source file
must be enclosed between double quotes or angle brackets. For example,

#include "stdio.h"
#include <stdio.h>

both instruct the compiler to read and compile the header for the C I/O system library
functions.

Include files can have #include directives in them. This is referred to as nested
includes. The number of levels of nesting allowed varies between compilers. However,
Standard C stipulates that at least eight nested inclusions will be available. Standard
C++ recommends that at least 256 levels of nesting be supported.

Whether the filename is enclosed by quotes or by angle brackets determines
how the search for the specified file is conducted. If the filename is enclosed in angle
brackets, the file is searched for in a manner defined by the creator of the compiler.
Often, this means searching some special directory set aside for include files. If the
filename is enclosed in quotes, the file is looked for in another implementation-defined
manner. For many compilers, this means searching the current working directory. If
the file is not found, the search is repeated as if the filename had been enclosed in
angle brackets.

Typically, most programmers use angle brackets to include the standard header
files. The use of quotes is generally reserved for including files specifically related to
the program at hand. However, there is no hard and fast rule that demands this usage.

In addition to files, a C++ program can use the #include directive to include a C++
header. C++ defines a set of standard headers that provide the information necessary
to the various C++ libraries. A header is a standard identifier that might, but need
not, map to a filename. Thus, a header is simply an abstraction that guarantees that
the appropriate information required by your program is included. Various issues
associated with headers are described in Part Two.

| Conditional Compilation Directives
There are several directives that allow you to selectively compile portions of your
program's source code. This process is called conditional compilation and is used widely
by commercial software houses that provide and maintain many customized versions
of one program.



Chapter 10: The Preprocessor and Comments 243

#if, #else, #elif, and #endif

Perhaps the most commonly used conditional compilation directives are the #if, #else,
#elif, and #endif. These directives allow you to conditionally include portions of code
based upon the outcome of a constant expression.

The general form of #if is

#if constant-expression
statement sequence
#endif

[f the constant expression following #if is true, the code that is between it and #endif is
compiled. Otherwise, the intervening code is skipped. The #endif directive marks the
end of an #if block. For example,

/* Simple #if example. */
#include <stdio.h>

#define MAX 100

int main(void)
{
#if MAX>99
printf("Compiled for array greater than 99.\n");
#endif

return 0;

}

This program displays the message on the screen because MAX is greater than 99.
This example illustrates an important point. The expression that follows the #if is
evaluated at compile time. Therefore, it must contain only previously defined identifiers
and constants—no variables may be used.

The #else directive works much like the else that is part of the C++ language: it
establishes an alternative if #if fails. The previous example can be expanded as
shown here:

/* Simple #if/#else example. */
#include <stdio.h>




244 C++: The Complete Reference

#define MAX 10

int main(void)
{
#1f MAX>99
printf ("Compiled for array greater than 99.\n");
#else
printf("Compiled for small arrav.\n");
#endif

return 0;

In this case, MAX is defined to be less than 99, so the #if portion of the code is not
compiled. The #else alternative is compiled, however, and the message Compiled for
small array is displayed.

Notice that #else is used to mark both the end of the #if block and the beginning of
the #else block. This is necessary because there can only be one #endif associated with
any #if.

The #elif directive means "else if" and establishes an if-else-if chain for multiple
compilation options. #elif is followed by a constant expression. If the expression is true,
that block of code is compiled and no other #elif expressions are tested. Otherwise, the
next block in the series is checked. The general form for #elif is

#if expression
statement sequence
#elif expression 1
statement sequence
#elif expression 2
statement sequence
#elif expression 3
statement sequence
#elif expression 4

#elif expression N
statement sequence
#endif



Chapter 10: The Preprocessor and Comments 245

For example, the following fragment uses the value of ACTIVE_COUNTRY to
define the currency sign:

tdefine US O
#define ENGLAND 1
#define JAPAN 2

#define ACTIVE_COUNTRY US

#if ACTIVE_COUNTRY == US

char currency[] = "dollar";
#elif ACTIVE_COUNTRY == ENGLAND

char currency[] = "pound";
#else

char currency({] = "yen";
#endif

Standard C states that #ifs and #elifs may be nested at least eight levels. Standard
C++ suggests that at least 256 levels of nesting be allowed. When nested, each #endif,
#else, or #elif associates with the nearest #if or #elif. For example, the following is
perfectly valid:

#if MAX>100
#if SERIAL_VERSION
int port=198;
#elif
int port=200;
#endif
#else
char out_buffer[100];
#endif

#ifdef and #ifndef

Another method of conditional compilation uses the directives #ifdef and #ifndef, which
mean "if defined" and "if not defined,” respectively. The general form of #ifdef is

#tifdef macro-name
statement sequerce
#endif



246 C++: The Complete Reference

If macro-name has been previously defined in a #define statement, the block of code will
be compiled.
The general form of #ifndef is

#ifndef macro-name
statement sequence
#endif

If macro-name is currently undefined by a #define statement, the block of code is
compiled.
Both #ifdef and #ifndef may use an #else or #elif statement. For example,

#include <stdio.h>
#define TED 10

int main(void)
{
#ifdef TED
printf ("Hi Ted\n");
#else
printf ("Hi anyone\n");
#endif
#ifndef RALPH
printf ("RALPH not defined\n");
#endif

return 0;

will print Hi Ted and RALPH not defined. However, if TED were not defined, Hi
anyone would be displayed, followed by RALPH not defined.

You may nest #ifdefs and #ifndefs to at least eight levels in Standard C. Standard
C++ suggests that at least 256 levels of nesting be supported.

___ | #undef

The #undef directive removes a previously defined definition of the macro name that
follows it. That is, it "undefines" a macro. The general form for #undef is

#undef macro-name



Chapter 10: The Preprocessor and Comments 247

For example,

#define LEN 100
#define WIDTH 100

char array[LEN] [WIDTH];
#undef LEN

#undef WIDTH
/* at this point both LEN and WIDTH are undefined */

Both LEN and WIDTH are defined until the #undef statements are encountered.
#undef is used principally to allow macro names to be localized to only those
sections of code that need them.

___| Using defined

In addition to #ifdef, there is a second way to determine if a macro name is defined.
You can use the #if directive in conjunction with the defined compile-time operator.
The defined operator has this general form:

defined macro-name

If macro-name is currently defined, then the expression is true. Otherwise, it is false. For
example, to determine if the macro MYFILE is defined, you can use either of these two
preprocessing commands:

#if defined MYFILE

or

#ifdef MYFILE

k.

You may also precede defined with the ! to reverse the condition. For example, the
following fragment is compiled only if DEBUG is not defined.

#1if !defined DEBUG
printf("Final version!\n");
#endif




248 C++: The Complete Reference

One reason for using defined is that it allows the existence of a macro name to be
determined by a #elif statement.

___| #line

The #line directive changes the contents of _ _LINE_ _and _ _FILE_ _, which are
predefined identifiers in the compiler. The _ _LINE_ _ identifier contains the line
number of the currently compiled line of code. The _ _FILE_ _ identifier is a string
that contains the name of the source file being compiled. The general form for #line is

#line number "filename"

where number is any positive integer and becomes the new value of _ _LINE_ _,
and the optional filename is any valid file identifier, which becomes the new value
of _ _FILE_ _. #line is primarily used for debugging and special applications.

For example, the following code specifies that the line count will begin with 100.
The printf() statement displays the number 102 because it is the third line in the
program after the #line 100 statement.

#include <stdio.h>

#line 100 /* reset the line counter */
int main(void) /* 1line 100 */
{ /* line 101 */
printf("%$d\n",__LINE__); /* line 102 */
return 0;

__| #pragma

#pragma is an implementation-defined directive that allows various instructions to
be given to the compiler. For example, a compiler may have an option that supports
program execution tracing. A trace option would then be specified by a #pragma
statement. You must check the compiler's documentation for details and options.

___| The # and ## Preprocessor Operators

There are two preprocessor operators: # and ##. These operators are used with the
#define statement.



Chapter 10: The Preprocessor and Comments ~ 249

The # operator, which is generally called the stringize operator, turns the argument
it precedes into a quoted string. For example, consider this program.

-

#include <stdio.h>

#define mkstri(s) # s

int main(void)

{

printf (mkstr(I like C++));

return G;

The preprocessor turns the line

printf(mkstr(I like C++)});

into

printf ("I like C++");

The ## operator, called the pasting operator, concatenates two tokens. For example,

#include <stdio.h>
#define concat(a, b) a ## b
int main{void)
{
int xy = 10;

printf("%d", concat(x, y));

return 0;

The preprocessor transforms

printf ("%d", concat(x, y));




C++: The Complete Reference

into

printf("%d", xy);

If these operators seem strange to you, keep in mind that they are not needed or
used in most programs. They exist primarily to allow the preprocessor to handle some
special cases.

Predefined Macro Names

C++ specifies six built-in predefined macro names. They are

__LINE_ _
__FILE_ _
__DATE_ _
__TIME_ _
__STDC_ _
_ _cplusplus

The C language defines the first five of these. Each will be described here, in turn.

The _ _LINE_ _and _ _FILE_ _ macros were described in the discussion of #line.
Briefly, they contain the current line number and filename of the program when it is
being compiled.

The _ _DATE_ _ macro contains a string of the form month/day/year that is the date
of the translation of the source file into object code.

The __TIME_ _ macro contains the time at which the program was compiled. The
time is represented in a string having the form hour:minute:second.

The meaning of _ _STDC_ _ is implementation-defined. Generally, if __STDC_ _is
defined, the compiler will accept only standard C/C++ code that does not contain any
nonstandard extensions.

A compiler conforming to Standard C++ will define_ _cplusplus as a value
containing at least six digits. Nonconforming compilers will use a value with five or
less digits.

Comments

C89 defines only one style of comment, which begins with the character pair /* and
ends with */. There must be no spaces between the asterisk and the slash. The compiler



Chapter 10: The Preprocessor and Comments /251

ignores any text between the beginning and ending comment symbols. For example,
this program prints only hello on the screen:

#include <stdio.h>

int main(void)
{
printf("hello");
/* printf ("there"); */

return 0;

This style of comment is commonly called a multiline comment because the text of
the comment may extend over two or more lines. For example,

/* this is a
multi-line
comment */

Comments may be placed anywhere in a program, as long as they do not appear in
the middle of a keyword or identifier. For example, this comment is valid:

x = 10+ /* add the numbers */5;

swi/*this will not work*/tch(c) {

is incorrect because a keyword cannot contain a comment. However, you should not
generally place comments in the middle of expressions because it obscures their
meaning.

Multiline comments may not be nested. That is, one comment may not contain
another comment. For example, this code fragment causes a compile-time error:

/* this is an outer comment

X = y/a;

/* this is an inner comment - and causes an error */
*/




252 C++: The Complete Reference

Single-Line Comments

C++ (and C99) supports two types of comments. The first is the multiline comment.
The second is the single-line comment. Single-line comments begin with a / and end
at the end of the line. For example,

// this is a single-line comment

Single line comments are especially useful when short, line-by-line descriptions are
needed. Although they are not technically supported by C89, many C compilers will
accept them anyway, and single-line comments were added to C by C99. One last
point: a single-line comment can be nested within a multiline comment.

You should include comments whenever they are needed to explain the operation
of the code. All but the most obvious functions should have a comment at the top that
states what the function does, how it is called, and what it returns.



The
Complete
Reference

C++

Part One examined the C subset of C++. Part Two describes those
features of the language specific to C++. That is, it discusses those
features of C++ that it does not have in common with C. Because many
of the C++ features are designed to support object-oriented
programming (OOP), Part Two also provides a discussion of its theory

and merits. We will begin with an overview of C++.






